Цифровой звук
 
 
Полезные ссылки
 
 
Реклама
 
Наши друзья
 
Аналог и цифра
Мастер-класс по цифровому звуку
Звуковые карты
Программное обеспечение для работы со звуком
Cамоучитель по работе с виртуальным звуком
Студийная Обработка Звука на ПК в Реальном Времени
Процессоры
Частоты
Мастеринг
Микширование
Практика записи
Звук   в   цифровом   кинематографе
Midi
Mp3
ЦИФРА, КОТОРУЮ СЛУШАЮТ
Цифровой звук и Интернет
Другие статьи.
Какие методы используются для синтеза звука?

1. Аддитивный (additive). Основан на утверждении Фурье о том, что любое периодическое колебание можно представить в виде суммы чистых тонов (синусоидальных колебаний с различными частотами и амплитудами). Для этого нужен набор из нескольких синусоидальных генераторов с независимым управлением, выходные сигналы которых суммируются для получения результирующего сигнала. На этом методе основан принцип создания звука в духовом органе.

Достоинства метода: позволяет получить любой периодический звук, и процесс синтеза хорошо предсказуем (изменение настройки одного из генераторов не влияет на остальную часть спектра звука). Основной недостаток - для звуков сложной структуры могут потребоваться сотни генераторов, что достаточно сложно и дорого реализовать. Для снижения стоимости реализации вместо набора отдельных генераторов (реальных или математических) применяется обратное преобразование Фурье.

2. Разностный (subtractive). Идеологически противоположен первому. В основу положена генерация звукового сигнала с богатым спектром (множеством частотных составляющих) с последующей фильтрацией (выделением одних составляющих и ослаблением других) - по этому принципу работает речевой аппарат человека. В качестве исходных сигналов обычно используются меандр (прямоугольный, square), с переменной скважностью (отношением всего периода к положительному полупериоду), пилообразный (saw) - прямой и обратный, и треугольный (triangle), а также различные виды шумов (случайных непериодических колебаний). Основным органом синтеза в этом методе служат управляемые фильтры: резонансный (полосовой) - с изменяемым положением и шириной полосы пропускания (band) и фильтр нижних частот (ФНЧ) с изменямой частотой среза (cutoff). Для каждого фильтра также регулируется добротность (Q) - крутизна подъема или спада на резонансной частоте.

Достоинства метода - относительно простая реализация и довольно широкий диапазон синтезируемых звуков. На этом методе построено множество студийных и концертных синтезаторов (типичный представитель - Moog). Недостаток - для синтеза звуков со сложным спектром требуется большое количество управляемых фильтров, которые достаточно сложны и дороги.

3. Частотно-модуляционный (frequency modulation - FM). В основу положена взаимная модуляция по частоте между несколькими синусоидальными генераторами. Каждый из таких генераторов, снабженный собственными формирователем амплитудной огибающей, амплитудным и частотным вибрато, именуетчся оператором. Различные способы соединения нескольких операторов, когда сигналы с выходов одних управляют работой других, называются алгоритмами синтеза. Алгоритм может включать один или больше операторов, соединенных последовательно, параллельно, последовательно-параллельно, с обратными связями и в прочих сочетаниях - все это дает практически бесконечное множество возможных звуков.

Благодаря простоте цифровой реализации, метод получил широкое распространение в студийной и концертной практике (типичный представитель класса синтезаторов - Yamaha DX). Однако практическое использование этого метода достаточно сложно из-за того, что бОльшая часть звуков, получаемых с его помощью, представляет собой шумоподобные колебания, и достаточно лишь слегка изменить настройку одного из генераторов, чтобы чистый тембр превратился в шум. Однако метод дает широкие возможности по синтезу разного рода ударных звуков, а также - различных звуковых эффектов, недостижимых в других методах разумной сложности.

4. Самплерный (sample - выборка). В этом методе записывается реальное звучание (сампл), которое затем в нужный момент воспроизводится. Для получения звуков разной высоты воспроизведение ускоряется или замедляется; при неизменной скорости выборки применяется расчет промежуточных значений отсчетов (интерполяция). Чтобы тембр звука при сдвиге высоты не менялся слишком сильно, используется несколько записей звучания через определенные интервалы (обычно - через одну-две октавы). В ранних самплерных синтезаторах звуки в буквальном смысле записывались на магнитофон, в современных применяется цифровая запись звука.

Метод позволяет получить сколь угодно точное подобие звучания реального инструмента, однако для этого требуются достаточно большие объемы памяти. С другой стороны, запись звучит естественно только при тех же параметрах, при которых она была сделана - при попытке, например, придать ей другую амплитудную огибающую естественность резко падает.

Для уменьшения требуемого объема памяти применяется зацикливание сампла (looping). В этом случае записывается только короткое время звучания инструмента, затем в нем выделяется средняя фаза с установившимся (sustained) звуком, которая при воспроизведении повторяется до тех пор, пока включена нота (нажата клавиша), а после отпускания воспроизводится концевая фаза.

На самом деле этот метод нельзя с полным правом называть синтезом - это скорее метод записи-воспроизведения. Однако в современных синтезаторах на его основе воспроизводимый звук можно подвергать различной обработке - модуляции, фильтрованию, добавлению новых гармоник, звуковых эффектов, в результате чего звук может приобретать совершенно новый тембр, иногда совсем непохожий на первоначальный. По сути, получается комбинация трех основных методов синтеза, где в качестве основного сигнала используется исходное звучание.

Типичный представитель этого класса синтезаторов - E-mu Proteus.

5. Таблично-волновой (wave table). Разновидность самплерного метода, когда записывается не все звучание целиком, а его отдельные фазы - атака, начальное затухание, средняя фаза и концевое затухание, что позволяет резко снизить объем памяти, требуемый для хранения самплов. Эти фазы записываются на различных частотах и при различных условиях (мягкий или резкий удар по клавише рояля, различное положение губ и языка при игре на саксофоне и т.п.), в результате чего получается семейство звучаний одного инструмента. При воспроизведении эти фазы нужным образом составляются, что дает возможность при относительно небольшом объеме самплов получить достаточно широкий спектр различных звучаний инструмента, а главное - заметно усилить выразительность звучания, выбирая, например, в зависимости от силы удара по клавише синтезатора не только нужную амплитудную огибающую, как делает любой синтезатор, но и нужную фазу атаки.

Основная проблема этого метода - в сложности сопряжения различных фаз друг с другом, чтобы переходы не воспринимались на слух и звучание было цельным и непрерывным. Поэтому синтезаторы этого класса достаточно редки и дороги.

Этот метод также используется в в синтезаторах звуковых карт персональных компьютеров, однако его возможности там сильно урезаны. В частности, почти нигде не применяют составление звука из нескольких фаз, сводя метод к простому самплерному, хотя почти везде есть возможность параллельного воспроизведения более одного сампла внутри одной ноты.

6. Метод физического моделирования (physical modelling). Состоит в моделировании физических процессов, определяющих звучание реального инструмента на основе его заданных параметров (например, для скрипки - порода дерева, состав лака, геометрические размеры, материал струн и смычка и т.п.). В связи с крайней сложностью точного моделирования даже простых инструментов и огромным объемом вычислений метод пока развивается медленно, на уровне студийных и экспериментальных образцов синтезаторов. Ожидается, что с момента своего достаточного развития он заменит известные методы синтеза звучаний акустических инструментов, оставив им только задачу синтеза не встречающихся в природе тембров.

7. (Alexander Grigoriev) WaveGuide технология, активно pазpабатываемая в Стэнфоpдcком Унивеpcитете и пpименяемая yже в неcкольких пpомышленных моделях электpонных pоялей, напpимеp, фиpмы Baldwin. Пpедcтавляет cобой pазновидноcть физичеcтого моделиpования, пpи котоpой моделиpyетcя pаcпpоcтpанение колебаний, пpедcтавленных диcкpетными отcчетами, по cтpyне (одномеpное моделиpование) и по pезонанcным повеpхноcтям (двyмеpное моделиpование) или в объемном pезонатоpе (тpехмеpное). Пpи этом появляетcя возможноcть моделиpовать также нелинейные эффекты, напpимеp yдаp молоточка и каcание cтpyны демпфеpом, а также взаимнyю cвязь cтpyн и cвязь гоpизонтальной и веpтикальной мод.


Сайт создан в системе uCoz