Какие методы используются для обработки звука?
1. Монтаж. Состоит в вырезании из записи одних участков, вставке других, их замене, размножении и т.п. Называется также редактированием. Все современные звукои видеозаписи в той или иной мере подвергаются монтажу.
2. Амплитудные преобразования. Выполняются при помощи различных действий над амплитудой сигнала, которые в конечном счете сводятся к умножению значений самплов на постоянный коэффициент (усиление/ослабление) или изменяющуюся во времени функцию-модулятор (амплитудная модуляция). Частным случаем амплитудной модуляции является формирование огибающей для придания стационарному звучанию развития во времени.
Амплитудные преобразования выполняются последовательно с отдельными самплами, поэтому они просты в реализации и не требуют большого объема вычислений.
3. Частотные (спектральные) преобразования. Выполняются над частотными составляющими звука. Если использовать спектральное разложение - форму представления звука, в которой по горизонтали отсчитываются частоты, а по вертикали - интенсивности составляющих этих частот, то многие частотные преобразования становятся похожими на амплитудные преобразованиям над спектром. Например, фильтрация - усиление или ослабление определенных полос частот - сводится к наложению на спектр соответствующей амплитудной огибающей. Однако частотную модуляцию таким образом представить нельзя - она выглядит, как смещение всего спектра или его отдельных участков во времени по определенному закону.
Для реализации частотных преобразований обычно применяется спектральное разложение по методу Фурье, которое требует значительных ресурсов. Однако имеется алгоритм быстрого преобразования Фурье (БПФ, FFT), который делается в целочисленной арифметике и позволяет уже на младших моделях 486 разворачивать в реальном времени спектр сигнала среднего качества. При частотных преобразованиях, кроме этого, требуется обработка и последующая свертка, поэтому фильтрация в реальном времени пока не реализуется на процессорах общего назначения. Вместо этого существует большое количество цифровых сигнальных процессоров (Digital Signal Processor - DSP), которые выполняют эти операции в реальном времени и по нескольким каналам.
4. Фазовые преобразования. Сводятся в основном к постоянному сдвигу фазы сигнала или ее модуляции некоторой функцией или другим сигналом. Благодаря тому, что слуховой аппарат человека использует фазу для определения направления на источник звука, фазовые преобразования стереозвука позволяют получить эффект вращающегося звука, хора и ему подобные. При помощи сдвига фазы на 90-180 градусов (последнее получается простым инвертированием отсчетов) реализуется эффект "псевдообъемности" звука (Surround).
5. ВременнЫе преобразования. Заключаются в добавлении к основному сигналу его копий, сдвинутых во времени на различные величины. При сдвигах на величины, сравнимые с периодом сигнала, эти преобразования превращаются в фазовые; при небольших сдвигах за пределами перида (примерно менее 20 мс) это дает эффект, близкий к хоровому (размножение источника звука), при бОльших - эффекты многократного отражения: реверберации (20..50 мс) и эха (более 50 мс).
6. Формантные преобразования. Являются частным случаем частотных и оперируют с формантами - характерными полосами частот, встречающимися в звуках, произносимых человеком. Каждому звуку соответствует свое соотношение амплитуд и частот нескольких формант, которое определяет тембр и разборчивость голоса. Изменяя параметры формант, можно подчеркивать или затушевывать отдельные звуки, менять одну гласную на другую, сдвигать регистр голоса и т.п.