Цифровой звук
 
 
Полезные ссылки
 
 
Реклама
 
Наши друзья
 
Аналог и цифра
Мастер-класс по цифровому звуку
Звуковые карты
Программное обеспечение для работы со звуком
Cамоучитель по работе с виртуальным звуком
Студийная Обработка Звука на ПК в Реальном Времени
Процессоры
Частоты
Мастеринг
Микширование
Практика записи
Звук   в   цифровом   кинематографе
Midi
Mp3
ЦИФРА, КОТОРУЮ СЛУШАЮТ
Цифровой звук и Интернет
Другие статьи.
Чем цифровое представление сигналов отличается от аналогового?

Традиционное аналоговое представление сигналов основано на подобии (аналогичности) электрических сигналов (изменений тока и напряжения) представленным ими исходным сигналам (звуковому давлению, температуре, скорости и т.п.), а также подобии форм электрических сигналов в различных точках усилительного или передающего тракта. Форма электрической кривой, описывающей (также говорят - переносящей) исходный сигнал, максимально приближена к форме кривой этого сигнала.

Такое представление наиболее точно, однако малейшее искажение формы несущего электрического сигнала неизбежно повлечет за собой такое же искажение формы и сигнала переносимого. В терминах теории информации, количество информации в несущем сигнале в точности равно количеству информации в сигнале исходном, и электрическое представление не содержит избыточности, которая могла бы защитить переносимый сигнал от искажений при хранении, передаче и усилении.

Цифровое представление электрических сигналов призвано внести в них избыточность, предохраняющую от воздействия паразитных помех. Для этого на несущий электрический сигнал накладываются серьезные ограничения - его амплитуда может принимать только два предельных значения - 0 и 1. Вся зона возможных амплитуд в этом случае делится на три зоны: нижняя представляет нулевые значения, верхняя - единичные, а промежуточная является запрещенной - внутрь нее могут попадать только помехи. Таким образом, любая помеха, амплитуда которой меньше половины амплитуды несущего сигнала, не оказывает влияния на правильность передачи значений 0 и 1. Помехи с большей амплитудой также не оказывают влияния, если длительность импульса помехи ощутимо меньше длительности информационного импульса, а на входе приемника установлен фильтр импульсных помех.

Сформированный таким образом цифровой сигнал может переносить любую полезную информацию, которая закодирована в виде последовательности битов - нулей и единиц; частным случаем такой информации являются электрические и звуковые сигналы. Здесь количество информации в несущем цифровом сигнале значительно больше, нежели в кодированном исходном, так что несущий сигнал имеет определенную избыточность относительно исходного, и любые искажения формы кривой несущего сигнала, при которых еще сохраняется способность приемника правильно различать нули и единицы, не влияют на достоверность передаваемой этим сигналом информации. Однако в случае воздействия значительных помех форма сигнала может искажаться настолько, что точная передача переносимой информации становится невозможной - в ней появляются ошибки, которые при простом способе кодирования приемник не сможет не только исправить, но и обнаружить.

Для еще большего повышения стойкости цифрового сигнала к помехам и искажениям применяется цифровое избыточное кодирование двух типов: проверочные (EDC - Error Detection Code, обнаруживающий ошибку код) и корректирующие (ECC - Error Correction Code, исправляющий ошибку код) коды. Цифровое кодирование состоит в простом добавлении к исходной информации дополнительных битов и/или преобразовании исходной битовой цепочки в цепочку большей длины и другой структуры. EDC позволяет просто обнаружить факт ошибки - искажение или выпадение полезной либо появление ложной цифры, однако переносимая информация в этом случае также искажается; ECC позволяет сразу же исправлять обнаруженные ошибки, сохраняя переносимую информацию неизменной. Для удобства и надежности передаваемую информацию разбивают на блоки (кадры), каждый из которых снабжается собственным набором этих кодов.

Каждый вид EDC/ECC имеет свой предел способности обнаруживать и исправлять ошибки, за которым опять начинаются необнаруженные ошибки и искажения переносимой информации. Увеличение объема EDC/ECC относительно объема исходной информации в общем случае повышает обнаруживающую и корректирующую способность этих кодов.

В качестве EDC популярен циклический избыточный код CRC (Cyclic Redundancy Check), суть которого состоит в сложном перемешивании исходной информации в блоке и формированию коротких двоичных слов, разряды которых находятся в сильной перекрестной зависимости от каждого бита блока. Изменение даже одного бита в блоке вызывает значительное изменение вычисленного по нему CRC, и вероятность такого искажения битов, при котором CRC не изменится, исчезающе мала даже при коротких (единицы процентов от длины блока) словах CRC. В качестве ECC используются коды Хэмминга (Hamming) и Рида-Соломона (Reed-Solomon), которые также включают в себя и функции EDC.

Информационная избыточность несущего цифрового сигнала приводит к значительному (на порядок и более) расширению полосы частот, требуемой для его успешной передачи, по сравнению с передачей исходного сигнала в аналоговой форме. Кроме собственно информационной избыточности, к расширению полосы приводит необходимость сохранения достаточно крутых фронтов цифровых импульсов.

Кроме целей помехозащиты, информация в цифровом сигнале может быть подвергнута также линейному или канальному кодированию, задача которого - оптимизировать электрические параметры сигнала (полосу частот, постоянную составляющую, минимальное и максимальное количество нулевых/единичных импульсов в серии и т.п.) под характеристики реального канала передачи или записи сигнала.

Полученный несущий сигнал, в свою очередь, также является обычным электрическим сигналом, и к нему применимы любые операции с такими сигналами - передача по кабелю, усиление, фильтрование, модуляция, запись на магнитный, оптический или другой носитель и т.п. Единственным ограничением является сохранение информационного содержимого - так, чтобы при последующем анализе можно было однозначно выделить и декодировать переносимую информацию, а из нее - исходный сигнал.


Сайт создан в системе uCoz